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THE GAS CHROMATOGRAPHIC DETERMINATION OF BINARY DIF-
FUSION COEFFICIENTS

I. A THEORETICAL DESIGN STUDY
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SUMMARY

A comprehensive theoretical error analysis of the factors involved in the chro-
matographic determination of binary diffusion coefficients shows that it is hardly
possible to obtain a precision of better than 0.5 if conventional peak measurement

techniques are employed.

INTRODUCTION

In a recent comprehensive survey of gaseous diffusion coeflicients (D), Marrero
and Mason! considered gas chromatography to give results of average reliability. At
a temperature of 300 °K, comparisons with D obtained by other methods showed
deviations of up to 49 with an average deviation of about 2 %,. The two-bulb method
is considered to be the most reliable, yielding values within 29} of the actual value
and, with exceptionally careful conirol?, within 1 9,. In view of the convenience of the
equipment, it is natural to consider whether it would be worth while trying to improve
upon the reliability of the chromatographic method. A thorough theoretical analysis
‘of the relevant design parameters is indicated. This study is seen as a contribution to
this end, although the treatment is not exhaustive. Several variants of the method
exist which differ mainly in the method by which end-effects arc climinated. A single
variant, known in the literature as the peak arrest (PA) method, is concenirated on.

The original experiments of Knox and McLaren® were used for the measure-
ment of the tortuosity factor in packed columns. As far as we know, this method has
not been applied to the systematic determination of diffusion coefficients per se. The
fact that it is relatively unexplored was not, however, the sole motivation for its selec-
tion. It also appears to be more convenient and flexible and avoids the uncertainties
related to the mass-tranfer terms in the plate-height expression which are inherent
in the other methods. These advantages have not been assessed quantitatively re-
l1ative to the other methods; it is possible that with the necessary care, these methods
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may be refined to the level of the PA method. The latter is expected, however, to be
at least representative of the chromatographic methods.

" The specific aim of this paper is to provide design data for the construction
of an apparatus for measuring binary gaseous diffusion coefficients to a prescribed
accuracy and precision. This implies a theoretical quantification of both systematic
and random errors. This distinction is significant, as the deviations reported by indi-
vidual workers usually refer to precision, while that of Marrero is an indication of the
accuracy. The difference between the two is particularly important in chromatography,
where gas chromatographers claim a 1-2 9 precision, in contrast to Marrero’s values
of up to 5% {up to 500 °K).

The various errors will be considered as arising from two sources: (i) the nor-
mal instrumentation errors and (ii) discrepancies between the theoretical model and
experimental procedure. Elimination of the latter will require careful claboration of
the assumptions implicit in the mathematical model. A 1:1 correspondence beiween
theory and experiment is ensured only if discrepancies are all either suitably quantified
and incorporated in the theoretical model or if the experimental procedure can be
refined so as to make this effect numerically negligible.

These two sources of error will now be considered separately. The latter is
treated first as it is basic to the whole procedure.

THEORETICAL MODEL AND EXPERIMENTAL PROCEDURE

The apparatus consists of a pressure source that maintains a steady flow of
carrier gas through an uncoated open-tubular column and past a detector. A gas
sample, introduced as a trace at the column inlet, is carried through the column and
its concentration is recorded as a function of time.

The differential equation describing the sample concentration distribution, C,
as a function of the axial, Z, radial, r’, and time, ¢, coordinates is

ac . ac #C 1 8 ,,aC
(50), = )57 + 2 {5z + 5 (" 5} O

where u(r’) is the linear carrier gas velocity and D has been assumed to be constant.
It is well known that, after a time interval of the order of the time required for
radial equilibrium, eqn. ! can be approximated by

ac acC | 0*C
o~ ez TPz @
where
u = linear velocity averaged over the cross-section.

D, = D + «’a*/48 D, in which #*e*/48 D represents an effective longitudinal
diffusion due to the coupling between the radial velocity distribution
g and the radial diffusion.
Application of the second moment operator
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to eqn. 2 yields*

dé*
TR 3)

so that for an initial variance o2, the variance developed during a fiow time 7 is given
by
> =2D,t+ o )]

Eqgn. 4 is the basic equation from which D can conveniently be obtained experimental-
ly. It is interesting to note that eqn. 4 is valid irrespective of the form of the inlet,
restricted only by the condition that C and its derivatives should tend to zero as
Z —> + co. Some other features of its derivation which require comunent are:

(i) The transient time necessary for the effective diffusion to become fully
operative has already been mentioned. This time will be of the order of a?/D (ref. 5).

(ii) The expression for the effective diffusion coefficients depends on the as-
sumption of a parabolic flow profile with no slip along the column wall.

(iii) The flow is assumed to be perfectly laminar, i.e., no convective eddies
are present.

(iv) In the integration of eqn. 3, D was assumed to be independent of 7. This
is not true if conditions such as pressure and temperature vary along the column axis.

(v) The walls are assumed to be smooth and the possibility of the existence of

a stationary phase is excluded, i.e., the mass distribution coefficient k& = 0.

(vi) Coiling and other geometrical effects may modify the diffusion coefficient.

(vii) Eqn. 4 is valid for an arbitrary shape of the input peak provided that ac-
tual second moments on a Z-coordinate basis are measured.

In the PA method, flow is arrested when the peak is about midway through
the column and allowed to spread out for a time 7z, under molecular diffusion alone.
This contribution to &7 is given by

o5 =2D¢t,

and is simply added to the other terms in egn. 4. Indeed, Sternberg® has shown that
extra-column effecis also contribute additively so that the total variance of the peak
after passing through the detector is given by

o = o} + ot + 65 + o} )

where o7 is the variance at the column inlet and o7 = 2D.(¢, + £3); £, is the time from
the moment that the peak enters the column to arrest and #; is the time from after
arrest to column outlet. o7 is considered to contain all additional contributions that
arise from connections between outlet and detector and the detector itself.

If 6% is now varied while all other variables are held constant, D is obtained
simply from the slope of the straight line 62 versus r,. Differences in pressure and tem-
perature between the diffusion region and the position where 6° is actually measured
can easitly be accounted for in terms of the gas laws. Gradients over the diffusion
region should be made negligible, however, as it will complicate the analysis unduly.
Possible variances introduced by the stop and start of the peak should alsc be con-
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stant, but this can easily be checked experimentally. Other sources of band spreadmg
are collected as the straxght line intersection and the uncertainties related to them
become merely a matter of the reproducibility of the experimental procedure. Many
of the difficulties mentioned above are thereby effectively eliminated.
‘ Provided that the diffusion takes place in a tube of uniform cross-section,
geometrical effects should be unimporiant. Coiling effects are also expected to be
pegligible as the diameter is very large reiative to the mean free path of the mole-
ctles. Non-elastic interactions with the column wall will reduce the molecular dif-
fusion by a factor 1/(1 + k), and adequate experimental preventive measures should
be taken for its elimination.

The final feature (vii) contains two effects that merit a more detailed investi-
gation. The first effect relates to the fact that chromatographic detectors measure peaks
on a time and not a Z basis, and these are not, in general, simply related. For instance,
in the case of a 8 input, the solution of eqn. 2 is

©®)

my (Z — wut)?
C@t) = T GrenE 5P | )
where ¢ = 2D.t. It has been shown by Levenspiel and Smith’ that it is only for
D, ful < 0.01 that the relationship

4Z) = wc*(t) (N

becomes a valid approximation. In the present case, o® is given by eqn. 5, which will
be writter: as

o> =2D, (4 + 1;) + o @

in order to separate the term dependent on the time of flow and the other contribu-
tions, 62 = o, + o}, + 0;. A criterion for the quantification of the deviation from
gaussian form can now be formulated by noting that the deviation is due to diffusion
which takes place during the transit time, At, of the peak past the detector. In this
time At, an extra A¢®> = 2D, At is added. A measure of A¢ is the time interval for 2¢
of the peak to move past the detector, i.e., A¢ = 2g/u. The relative error in the variance
should therefore be a function of A6%/6%, which can be written as

Ac? 4
29 - . ®
a2 uly | jo.\27ul \7q*
[2(De)_’_( 1) (De)]
It follows that the deviations can be reduced by decreasing the dimensionless param-

eters D, = D, ful and | = I/a,. The actual effect of these parameters can be assessed
by incorporating them into the expression for C as

Hig

Cl,r) = S
e [2(25) () + () ]}
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Fig. 1. Quantification of the effect of finite transit time past the detector. The percentage error in
w, is given as a function of De/ul for different values of [ = //a..

If C is plotted as a function of ¢, a comparison between the Z-based ¢ (at r = lu)
and 2 measured in terms of the actual w, can be made as a function of D, and /. The
results of such an analysis are summarized in Fig. 1. No effort was made to achieve
precision and the straight lines are drawn merely as an indication of the trends. For
a representative value of / & 30, it can be seen that a value of D, = D_/ul ~ 10~3 will
reduce the error to about 0.1 9, which can usually be regarded as negligible.

The second effect is not inherent in the method but arises from a desire to
keep the equipment as simple as possible. Provided that the facilities are available,
the analogue output from the detector can be digitized and the variance evaluated
directly on a digital computer. If not, the common procedure is to assume a gaussian
peak form and evaluate ¢ from the known relationship between ¢ and the peak
width at a certain fractional height. The gaussian assumption is critical in this instance.
Deviations can be the result of two types of factors. The first group is associated with
non-gaussian deviations of the Z distribution itself and can be caused by effects such
as multi-site adsorption, pressure and temperature gradients across the peak during
peak spreading and a non-gaussian inlet distribution. The necessity for eliminating
the first two has already been stressed, while the relative contribution of the inlet,
and thus its contribution to the non-gaussian deviation, can be reduced to an arbitrary
level simply by increasing #,. This follows because 67, is known to be gaussian. The
second group arises from detector effects. The first of these, viz. the measurement
of the distribution on time basis, has already been discussed. Non-linear detector
response constitutes the second. This is always a possibility which should be investi-
gated separately for each specific mixture—detector combination. With digital analysis,
numerical correction of the data is feasible provided that the concentration re-
sponse is known. For the peak-width method, analysis is virtually precluded unless
the sensitivity can be increased to admit analysis in a lower concentration range where
the response becomes sufficiently linear. A third factor is the finite detector volume,
which implies that the measurement is not a point measurement. Sternberg® has shown
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that this contributes 62 = /;; - (Vege/ V)2, whick unfortunately occurs in the form of
an exponential tail. The fact that it is a constant contribution is consequently no guar-
aatee that the slope of the o versus ¢ line remains unaffected, as the gaussian assump-
ticn is violated. The final consideration concerns the finite response time of servo-
mechanisms in the recorder. This normally should not be a problem with modern
equipment, but it is evident that elimination of the potential sources of error listed
will require a careful study of detector specifications.

INSTRUMENT ERRORS

The actual measurements made in the determination of D can be ordered as
follows:

(i) The peak width, w,, at fractional height r is measured. From w,, 62 is cal-
culated as

ol = —w8lnr (11

(1) c;‘z, is the variance as measured on the recorder paper. What is required is
the actual variance, 62, of the peak within the column. As time is invariant, this is

given by
0* = o, (uc/up) (12)
where
u, = linear paper velocity;
uc = linear velocity of the carrier at the position of arrest within the column
but at the time that the peak moves past the detector. Eqn. 12 assumes
the validity of the simple relationship between the time and the Z-based
second moment, as discussed in the previous section.
(iif) The measurement of ¢* is repeated for different times, 7,, and a straight
line is fitted to the data by means of a least-squares analysis. The slope, b, of this line
is related to D by

D =p)2 - (13)

Three stages in the error analysis can now be identified. Firstly, the uncertainty in D
is derived in terms of the uncertainty of a single ¢ measurement and the number ()
and spread (Var ;) of the measurements (cf., eqn. 15) so that a constraint set on the
uncertainty of a single ¢° depends on two factors, viz. the uncertainty in the coordinate
transformation defined by egn. 12 and the uncertainty in the actual measurement of
the width, w,, on the recorder paper. These two facets will be dealt with below under
Stage 2 and Stage 3, respectively. Random and systematic errors will be considered
separately.

Random errors
Stage 1. According to Birge®, the variance, Var 5, in the slope of a straight line

is given by
Var b = r2 (n/G) (14)
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where
r. = [Z djf(n — 2)I*

and
G=nX1;— (Zn)

where

¢ is an observed value and o; (calc.) the corresponding value predicted by the
straight line. Eqn. 14 can be rewriiten in terms of Var ¢,, defined by

Var £, = 2 (ty; — <t;>Yfn—1)

as

zd;
Varb:(n—jl)-(niZ).( Valrtz) s

The factor £d2/(n — 1), in the remainder of this discussion, will be regarded as equiv-
alent to the variance defined by

Var ¢® = X (¢; — <a?>)/(n — 1) (16)

Strictly, this is not correct, as Var ¢ refers to measurements carried out at the same
£,. On the other hand, Var o? is expected to be virtually independent of ¢, so that the
approximation should te valid. In addition, the above analysis implicitly assumes
that deviations are due exclusively to variations in o2, i.e., that the variance in time
measurements can he regarded as negligible.

For a given Var ¢, eqn. 15 predicts Var b to be inversely proportional to both
n—2 and Var z,. As (Var £,)* can be interpreied as a rough measure of the spread,
At,, of the ¢, values, an increase in ¢, can be seen as an effective means of decreasing
the variance in D. The theoretical predictions are shown in Figs. 2 and 3, from which
it follows that little is gained by increasing A4¢, and n beyond » ~ 8 and A7, ~ 10 min.
it also follows from an inspection of eqn. 15 and the definition of Var ¢, that the best
sampling policy for a specific value of # is to repeat the measurements n/2 times each
at the lower and the higher ¢, value instead of spreading them over the intermediate
range. This assumes there is a constant statistical weight factor over this range.

Stage 2. It follows directly from eqn. 12 that

Var 62 4 Var « 4 Varu, , Vara)
ot e + w, T an

b4

so that the coordinate transformation gives a contribution

-+

z t
23 u;

4 Var u 4 Var u, (18)
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Fig. 2. Illustration of depeadence of Var & on the number of measurements, # (eqn. 15).

In modern equipmert, the second term should be negligible so that the concern is
actually to minimize the first. This will depend on the functional dependence of Var «
on u, which in turn will depend on the method used in measuring ». An increase in u
will also have to be considered in conjunction with its effect on (i) the finite transit
time effect at the outlet, (ii) the dependence of the arrest characteristics on z and
(iii} the dependence of var o7 on u, as one requires o> to be a constant for all measure-
ments.

These questions can be more conveniently answered experimentally and a
theors=tical analysis will not be attempted here.
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Fig. 3. Hlustration of dependence of Var 5 on #; (eqn. 15).
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Stage 2.1f r = y/h is the fractional height at which the peak width, w,, is
measured, the variance ¢ is related to w, by eqn. 11, ie.

‘&7 = wif8 In hfy g o (19)

" if a gaussian peak form is assumed. Calculation of &, requires four independent mea-
surements: (i) placement of the bascline, B, and measurement of (ii) peak height A,
(iii) fractional beight y and (iv) width w,. Errors in each of these factors will give rise
to an additive variance contribution in ¢.. The general equation relating errors in
6} to errors in the measured quantities fOHOWS from eqn. 19 as

‘jl
do‘f, _ Zdw,. . dy Cart (20)

1

o2 W, yin Afy " Eln hjy

This equation will be applied to the evaluation of the contributions due to B, i, y
and w,. The analysis will follow closely that of Ball et al.° for an analogous investi-

gation.

(i} Baseline. Let the true baseline define the line of reference. If B is too low,
AB will be negative; if B is too high, 4B > 0 and & will then be measured incorrectly
as b — AB. The placing of the y line relative to the incorrect baseline will then involve
an additional error of + AR so that

y=r(h —AB) + AB
=rh+A4B(1 —r) 2n

and

dy =y — rh (= truey)
=AB({1 —r) (22)

This error in y also introduces an error in w;:

aw, = (Gee) ay = —fov o, [[» (1 hiy) T} & @3)

so that from eqns. 22 and 20, with

dw, = — 2%6,(1 — r) AB/[y(In hfy)*]
dy =(1—n4s8 ;

and
dh = — 4B
it follpws that

dos _ —(1—n4B _ (1—0n4B8 AB ‘
= ' - — /
olg v In Bly TSy AWk ABlthin hly) (24)
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I: is interesting to note that the errors in w,. and y canoel each other Thls will also be
seen to apply in (ii) and (iii) below.

(i} Height, h. An error, Ah, i in the he:ght will aifect the y value even if the base-
Ime is correct:

Yiacorrect = f(h + Ah) . .
dy = rdh - 25)

Also, from egn. 23,

2% g, rdkh
dw, = ————2 26
" y (n Afy)* (26)
Thus
dy = rdh
da = 4h
so that
2
9o — _ Anjh 1n hly) N
o,
(iii) Intermediate height, y. Here
dh =0
dy = 4y
and
2t g, Ay
dw = ——— %7
i y Qn Afy)*
so that
daj,
- 28
= 0 (28)
(iv) Width. Here
dr =
dy =
dw, = Aw,
"Therefore
] da'f,w 24w,

= ‘ : @

-4
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- Because the measurements are statistically independent, the total variznce is the sum
of the individual variances:

Var g, 1 2 2 2 2 (4By
———2 = — (Var o,z + Varo,, + Varo,, + Vare,,) = =5+ +
0,; G: pB T by b P 73 (ln h/y)z
A (In Afp)? 262 1n hjy
According to Ball er al.'?, Aw, can be formulated semi-empirically by
Aw, = dm 1 + 2] Gy
substitution of which into egn. 30 gives '
s AdmP (U )
2 2 1 2
Varg, _ (4B) + (4hy* | ( 4rhinhly G2)

of R (Quhly} w?
In Fig. 4, the relative variance in o7, is plotted as a function of the peak shape factor
hfw, s for different r = y/h. Typical values of 4B, Ah and Am were taken to be 0.010,
0.012 and 0.008 cm, respectively!®, and A was taken to be 20 cm (the typical width of
a recorder paper). Fig. 5 is a similar plot of Var ¢}/c} as a function of r for various
shape facters. Peaks can be regarded as normal for a shape factor s = Afw, s = 1.
Values of s greater than unity represent sharper peaks, while broad peaks are charac-
terized by s values smaller than unity. A number of general observations follow from
an inspection of the figures: (i) sharp peaks give rise to excessive variances in the
width measurement and should be avoided; (ii) little is gained by decreasing s below
1; and (iii) for s = 1, the optimum r is about 0.2.

8
3 i ——— r = 0.8
H ————r = 0.05
2, st \ — =05
> 3 —r = Q.25
X st A
o
%
~ 4
o
«b 3k
g
A d
i
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1288 3} [} $agee 0 3 3 : $s13 3 3 ¢ 3 ]
160 o { (VR
s=h/w, .

Fig. 4. Dependence of (Var 6,%)/c,* on shape, s, of peak.
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Fig. 5. Dependence of (Var ¢,%)/0,* on fractional height, r, at which the width is measured.

These results should not be taken too literally, as they are based on a numerical
model that may not be generally valid. They also rest on-the assumption of gaussian
peak shape. What they do indicate, however, is that the choice of peak shape and
fracticnal height is not trivial, and that an effort should be made to ‘optimize the mea-
surements with respect to them.

Systematic errors. The systematic errors that arise from instrumentation can
be simply systematized by listing all of the measuring instruments employed. Their
relative contributions are assessed in terms of the general expression relating D via
b and the coordinate transformation to w,. The time axis can be distorted owing to
inaccurate time measurement, which can be attributed to either the device used, the
operator or both. Serious errors can be introduced if the absolute measurements of
u and u, are in error. This is quantified by writing eqn. 12 in differential form:

a? =27—2 u, + a; . . : @9

Other major potential sources of error are as follows.

(i) The detector response, which has already been discussed.

(if) Absolute errors in recorder response.

{iif) Absolute errors in the measurcments of distances on the recording paper.
In most instances, e.g.,"with a ruler, these errors are due to both the instrument and
operator.

(iv) The conditions for which D are reported may be inaccurate. These mclude
temperature, pressure, purity of the gases used and the validity of the assumption of
tracs conditions for the sample (concentration dependence of D).

DISCUSSION

It is evident that compliance with an extensive list of conditions is prerequisite
to the c’nromatograpiﬁc peak arrest method for the determination of diffusion co-
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efficients. On the other band, these demands invariably involve the refinement of
relatively simple measurements and standard precautionary measures, so that there
appears to be no inherent limitation o the development of the method to the ievel
of the best existing techniques.

It has been pointed out that many of the crucial issues can be decided only by
actual experiments so that quantitative predictions are premature at this stage. An
indication of the demands made on the measurements, however, can be given in terms
of the preceding analysis. Two specifications in D will be considered, viz., 1 and 0.1 %.
These approximately represent the state of art and an order of magnitude improve-
ment, respectively.

-Typically, values of D range from 0.1 to 1.0 cm?sec—*. Consider the case when
D = 0.1 cm®sec™! and Var D/D? = 10~* (i.e., the relative standard deviation of D is

1%). From
b= b, il (34)

it follows that

Var b, Var b Var u Var % '
r 4 4 £ (35
b2 b w2 u

P

If the reasonable assumption is made that the last term is negligible, it follows with
the use of egns. 13 and 34 that
Var D Var « ) (36)

Varb,,=4(%—)4D2( 5 — 4

Remembering that D is not a variable but dependent on the physical system, Var by, is
seen to exhibit an optimuem with respect to « if Var & is assumed to be constant. By
differeniiating egn. 36 and equating the resuit to zero, #,,, is obtained as

Hop: = [b Var uf(Var D/DI (37

Some numerical resuits are summarized in Table I (the velocities are in cm/sec).
From eqn. 37 in egn. 36:

. 4

(VA B = o () s G8)
TABLE 1
VALUES OF &z, (EQN. 37) FOR VARIOUS COMBINATIONS OF (Var D)/D* AND Var n.
Var u Var D
(qrnzlsegz) >

10-¢ 0- .

10-¢ 245 245

10 0.245 245
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An order of magmfude calculatlon of 02 can: now be based on eqn‘ 38. Let n -:8;_
Var £, = 104 (correspondmg to t s 600 sec) D=105 cmiséc™!, Varuy = 10~ 3 cm?
sec—2and #, =05 cmsec"‘ Foral% precxsmn mD the correspondmg Va):a'z ~~ Q.3
cm* while tor 0.1% Var R 0.3- -107¢cm*. LA representanve value for ap is.ca.’5 cmi.

' Vataf, :4 Yé.t"o;,;' 7
s it Ta

}(39)5
7 _ . R T
the standard devnanons in o, are obtamed as Acr,, ~5- 10‘2 cm aud Adc, ~ ;5 10'5 cm
for 19 and 0.1% precision, respectively. These are the uppér hmxts as the errors,
-tegarded as additive, may cancel each other to a certain’ extent in pract:ce Nevertheless,
it can be seen that it would hardlv be nossible to’ surpass a nremcvnn of 0 5"/ if con-

UL BULAL LRIQL I0 WAORAARD kAR eoeilill L0 32218 prwwioaoil o2 U

venuonal peak measurement techmques are employed fa precm:m of 0.1 / is’ re-
qulred the use of electronic data processing equxpment appears to become 1mper—
ative.
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LIST OF SYMBOLS

= inner column radius;
= na?;
= slope of straight line: ¢* vs. ¢,;

= slope of straight line: o3 vs. 1,;
‘= baseline; :

= solute concentration;
= residual of jth measurement
defined as d; = &% (obs.) — &3 (cale.);

_: effective molecular diffusion coeficient -
‘= dimensionless parameter, defined as D, = D, flu;
= binary molecular diffusion coeﬁiment -
= parameter defined in eqn. 14;

= standard deviation;

= peak height;

= mass distribution coeﬁic;ent

= column length; : ,
‘= dimensionless parameter, deﬁned as I = l/ o3
m = ‘parameter in eqn. 31; :
" 'm, = total sample mass;
-'m = number of measurements;

r  =fractional height, y/A;

r’ - = radial coordinate;
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= parameter defined as [Zd;/(n—2)}*;

= peak shape factor, defined as s = kfw, s;

= total peak variance in column coordinates; .

= variance produced during time of flow through column;
= variance produced by diffusion alone, i.e., during £,;

= variance at column inlet;

tector; .
= total peak variance on recorder paper;
= time; )
= time from moment peak enters column to arrest;
= arrest time (time of spreading);
s = time from after arrest to column outlet;
u(r') = linear carrier gas velocity at r';
# = linear carrier gas velocity averaged over cross-section;
u#, = linear chart paper speed;

o6 e Mv% %'ﬂquﬂ%‘ Q,,“f‘«"

¥V = volume rate of flow;
Ve.re = effective detector volume;
w = peak width;
w, = peak width at fractional height r;
y = intermediate height at which peak width is measured;
Z = axial coordinate.
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= variance produced by extra-column effects at outlei, iacluding de-



