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SUMMARY 

A comprehensive theoretical error analysis of the factors involved in the ckro- 
matographic determination of binary diffusion c0efEcient.s shows that it is hardly 
possible to obtain a precision of better than 0.5 % if conventional peak measurement 
techniques are employed. 

XNTRGD’JCI’IGN 

In a recent comprehensive survey of gaseous diffusion coetficients (D), Marrero 
and Mason’ considered gas chromatography to give results of average reliability. At 
a temperature of 300 “K, comparisons with D obtained by other methods showed 
deviations of up to 4 % with an average deviation of about 2 %_ The two-bulb method 
is considered to be the most reliable, yielding values within 2% of the actual value 
and, with exceptionally careful contro12, within 1%. In view of the convenience of the 
equipment, it is natural to consider whether it would be worth while trying to improve 
upon the reliability of the ckromatorzmphic method. A thorough theoretical analysis 
-of the relevant design parameters is indicated. Tkis study is seen as a contribution to 
tkis end, although the treatment is not exhaustive. Several variants of the method 
exist which dilTer mainly in tke method by which end-effects are eliminated. A single 
variant., known in tke literature 

McLaren3 were used for the measure- 
ment of the tortuosity factor in packed columns. As far as we know, this method has 
not been applied to tke systematic determination of diffusion coefficients per se. The 
fact that it is relatively unexplored was not, however, the sole motivation for its selcc- 
tion. It also appears to be more convenient and flexible and avoids tke uncertainties 
related to tke mass-franfer terms in the plate-height expression which are inherent 
in the other methods. Tkese advantages have not been assessed quantitatively re- 
lative to tke otker methods; it is possible tkat with tke necessary care, these methods 
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may be refined to the level of the PA method. The latter is expected, however, to be 
at least representative of the chromatographic methods. 

. The specific aim of this paper is to provide design data for the construction 
of an apparatus for measuring binary gaseous diffusion coefficients to a prescribed 
accuracy and precision. This implies a theoretical quantification of both systematic 
and random errors. This distinction is signScant, as the deviations reported by indi- 
vidual workers usually refer to precision, while that of Marrero is an indication of the 
accuracy. The difference between the two is particularly important in chromatography, 
where gas chromatographers claim a l-2 74 precision, in contrast to Marrero’s values 
of up to 5% (up to 500 9s). 

The various errors will be considered as arising from two sources: (i) the nor- 
mal instrumentation errors and (ii) discrepancies between the theoretical model and 
experimental procedure. Elimination of the latter will require careful elaboration of 
the assumptions implicit in the mathematical model. A 1 :i correspondence between 
theory and experiment is ensured only if discrepancies are all either suitably quantified 
and incorporated in the theoretical model or if the experimental procedure can be 
refined so as to make this effect numerically negligible. 

These two sources of error will now be considered separately. The latter is 
treated first as it is basic to the whole procedure_ 

THEORETICAL MODEL AND EXPERIMENTAL PROCEDURE 

The apparatus consists of a pressure source that maintains a steady flow of 
carrier gas through an uncoated open-tubular column and past a detector. A gas 
sample, introduced as a trace at the column inlet, is carried through the column and 
its concentration is recorded as a function of time. 

The differential equation describing the sample concentration distribution, C, 
as a function of the axial, 2, radial, r’, and time, t, coordinates is 

ac (4 
ac 

- at z 
= -u(r’) -z& 

+pc , 1 
lazt T-;i-w$ (rf 3) (1) 

where I is the linear carrier gas velocity and D has been assumed to be constant. 
It is well known that, after a time interval of the order of the time required for 

radial equilibrium, eqn. I can be approximated by 

ac ac 
- = -VT + at 

D a2c 
“F 

where 
= linear velocity averaged over the cross-section. 

;, =D + u2a’f48 D, in which u2az/48 D represents an effective longitudinal 
diffusion due to the coupling between the radial velocity distribution 

am and the radial diffusion. 
Apphcation of the second moment operator 

_,J”= (z - <Z>)2 dZ,/__J+= Cd” 
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to eqn. 2 yields5 

dd 20 -= 
dt e 

so that for an initial variance a& the variance developed durin: a flow time t is given 

by 

aZ=2D,t+& (4) 

Eqn. 4 is the basic equation from which D can conveniently be obtained experimental- 
ly. It is interesting to note that eqn. 4 is valid irrespective of the form of the inlet, 
restricted only by the condition that C and its derivatives should tend to zero as 
Z -+ -& 03. Some other features of its derivation which require comment are: 

(i) The transient time necessary for the effective diffusion to become fully 
operative has already been mentioned. This time will be of the order of d/D (ref. 5). 

(ii) The expression for the effective diKusion coefficients depends on the as- 
sumption of a parabolic flow profile with no slip along the column wall. 

(iii) The flow is assumed to be perfectly laminar, i.e., no convective eddies 
are present. 

(iv) In the integration of eqn. 3, D was assumed to be independent of P. This 
is not true if conditions such as pressure and temperature vary along the column axis. 

(v) The walls are assumed to be smooth and the possibility of the existence of 
a stationary phase is excluded, i.e., the mass distribution coefhcier-t k = 0. 

(vi) Coiling and other geometrical effects may modify the diffusion coefficient. 
(vii) Eqn_ 4 is valid for an arbitrary shape of the input peak provided that ac- 

tual second moments on a Z-coordinate basis are measured. 
In the PA method, flow is arrested when the peak is about midway through 

the column and allowed to spread out for a time tz under molecular- difFasion alone. 
This contribution to d is given by 

c&=20& 

and is simply added to the other terms in eqn. 4. Indeed, Sternberg has shown that. 
extra-column effects also contribute additively so that the total variance of the peak 
after passing through the detector is given by 

62=6ftb:+G,t0: (5) 

where 4 is the vtiance at the column inlet and G$ = 2D,(t, + t3); t, is the time from 
the moment that the peak enters *he column to arrest and ts is the time from after 
arrest to column outlet. 0” is considered to contain all additional contributions that 
arise from connections between outlet and detector and the detector itself. 

If dD is now varied while all other variables are held constant, D is obtained 
simply from the slope of the straight line crz ver.s~s &. Differences in pressure and tem- 
perature between the diffusion region and the position where Oz is actually measured 
can easily be accounted for in terms of the gas laws. Gradients over the diffusion 
region should be made negligible, however, as it will complicate the analysis unduly. 
Possible variances introduced by the stop and start of the peak should alsc be con- 
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star& but this can easily be checked experimentally. Other sources of band spreading 
are collected as the straight line intersection and the uncertainties related to them 
become merely a matter of the reproducibility of the experimental procedure. Many 
of the difhculties mentioned above are thereby effectively eliminated. 

Provided that the diffusion takes place in a tube of uniform cross-section, 
geometrical effects should be unimportant. Coiling effects are also expected to be 
negligible as the diameter is very large relative to the mean free path of the mole- 
cules. Non-elastic interactions with the column wall will reduce the molecuku dif- 
fusion by a factor l/(1 + k), and adequate experimental preventive measures should 
be taken for its elimination. 

The final feature (vii) contains two effects that merit a more detailed investi- 
gation. The first effect relates to the fact that chromatographic detectors measure peaks 
cn a time and not a 2 basis, and these are not, in general, simply related. For instance, 
in the case of a 6 input, the soIution of eqn. 2 is 

C(Z,t) = A (;;$)*-exp [- (z Gut’1 ] (6) 

where a2 = 2D,r. It has been shown by Levenspiel and Smith’ that it is only for 
D&Z < 0.01 that the relationship 

becomes a valid approximation. In the present case, & is given by eqn. 5, which wili 
be written as 

in order to separate the term dependent on the time of flow and the other contribu- 
tions, 4 = t$ + $, + 4. A criterion for the quantification of the devia’ion from 
gaussian form can now be formulated by noting that the deviation is due to diffusion 
which takes place during the transit time, dr, of the peak past the detector- In this 
time dr, an extra 4oZ = 2DJt is added. A measure of dt is the time interval for 20 
of the peak to move past the detector, i.e., 4 t = 25/u. The relative error in rhe variance 
should therefore be a function of 4oz/oZ, which can be written as 

It follows that the deviations can be reduced by decreasing the dimensionless param- 
eters De = D&I and I= Ilo,_ The actual effect of these parameters can be assessed 
by incorporating them into the expression for C as 
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Fig. 1. Quantification of the effect of tinite transit time past the detector. The percentage error in 
w, is given as a function of De/u1 for ditferent values of i = i/a,. 

If C is plotted as a function of f, a comparison between the Z-based ti (at t = I/u) 
and Ot measured in terms of the actual NY+ can be made as a function of D, and 1. The 
results of such an analysis are summarized in Fig. 1. No effort was made to achieve 
precision and the straight lines are drawn merely 2s an indication of the trends. For 
a representative value of Z = 30, it can be seen that a value of B, = D,/ul a low3 will 
reduce the error to about 0.1 %, which can usually be regarded as negligible. 

The second effect is not inherent in the method but arises from a desire to 
keep the equipment as simple as possible. Provided that the facilities are available, 
the analogue output from the detector can be digitized and the variance evaluated 
directly on a digital computer. If not, the common procedure is to assume a gaussian 
peak form and evaluate Oz from the known relationship between 0’ and the peak 
width at a certain fractional height. The gaussian assumption is critical in this instance. 
Deviations can be the result of two types of factors. The first group is associated with 
non-gaussian deviations of the 2 distribution itself and can be caused by elects such 

as multi-site adsorption, pressure and temperature _mdients across the peak during 
peak spreading and a non-gaussian inlet distribution. The necessity for eliminating 
the first two has already been stressed, while the relative contribution of the inlet, 
and thus its contribution to the non-gaussian deviation, can be reduced to an arbitrary 
level simply by increasing f,. This follows because o’, is known to be gaussian. The 
second group arises from detector effects. The first of these, viz. the measurement 
of the distribution on time basis, has already been discussed. Non-linear detector 
response constitutes the second. This is always a possibility which should be investi- 
gated separately for each specific mixture-detector combination. With digital analysis, 
numerical correction of the data is feasible provided that the concentration re- 
sponse is known. For the peak-width method, analysis is virtually precluded unless 
the sensitivity can be increased to admit analysis in a lower concentration range where 
the response becomes sufficiently linear. A third factor is the finite detector volume, 
which implies that the measurement is not a point measurement. Stemberg has shown 
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that this contributes 4 = ‘/rf - (V&r/w, which unfortunately occurs in the form of 
an exponential tail. The fact that it is a constant contribution is consequently no guar- 
antee that the slope of the Oz versus t line remains unafhzcted, as the gaussian assump- 
tion is violated. The final consideration concerns the finite res_ponse time of servo- 
mechanisms in the recorder. This normally should not be a problem with modem 
equipment, but it is evident that elimination of the potential sources of error listed 
will require a careful study of detector specifications. 

INSTRUMENT ERRORS 

The actual measurements made in the determination of D can be ordered as 
follows : 

(i) The peak width, w,, at fractional height r is measured. From iv,, 4 is cal- 
culated as 

& = --iv;/8 In r (11) 

(ii) 0: is the variance as measured on the recorder paper. What is required is 
the actual variance, Oz, of the peak within the column. As time is invariant, this is 
given by 

&‘ = G; (Z&U;) (13 

where 
u, = linear paper velocity; 
U, = linear velocity of the carrier at the position of arrest within the column 

but at the time that the peak moves past the detector. Eqn. 12 assumes 
the validity of the simple reIationship between the time and the Z-based 
second moment, as discussed in the previous section. 

(iii) The measurement of of is repeated for different times, tz, and a straight 
line is fitted to the data by means of a least-squares analysis. The slope, b, of this line 
is related to D by 

D = b/2 (13) 

Three stages in the error analysis can now be identified. Firstly, the uncertainty in D 
is derived in terms of the uncertainty of a single d measurement and the number (n) 
and spread (Var tJ of the measurements (~5, eqn. 15) so that a constraint set on the 
uncertainty of a single Oz depends on two factors, Gz. the uncertainty in the coordinate 
transformation defined by eqn. 12 and the uncertainty in the actual measurement of 
the width, w,, on the recorder paper. These two facets will be dealt with below under 
Stage 2 and Stage 3, respectively. Random and systematic errors will be considered 
separately. 

Random errors 

Stage 1. Accordlng to Birges, the variance, Var b, in the slope of a straight line 
is given by 

Var b = r: (n/G) (14) 
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where 

r, = fZd,‘l(n - 2)]* 

and 

where 

4 = 4 - 4 (talc.) 

4 is an observed value and o, (talc.) the corresponding value predicted by the 
straight line. Eqn. 14 can be rewritten in terms of Var tz, defined by 

Var r2 = C(f,, - <tz>)t/(n-ll) 

as 

The factor Edj/(n - I), in the remainder of this discussion, will be regarded as equiv- 
alent to the variance defined by 

Var 02 = _Z(G; - <oZ >)z/(n - 1) (16) 

Strictly, this is not correct, as Var a’ refers to measurements carried out at the same 
r,. On the other hand, Var aZ is expected to be virtually independent of & so that the 
approximation should be valid. In addition, the above analysis implicitly assumes 
that deviations are due exclusively to variations in 02, Le., that the variance in time 
measurements can be regarded as negligible. 

For a given Var c?, eqn. 15 predicts Var b to be inversely proportional to both 
12-2 and Var ts_ As (Var tz)* can be interpreted as a rough measure of the spread, 
LIZ,, of the tt values, an increase in rlt, can be seen as an effective means of decreasing 
the variance in D. The theoretical predictions are shown in Figs. 2 and 3, from which 
it follows that little is gamed by increasing& and n beyond n m 8 and&. B 10 min. 
It also follows from an inspection of eqn. 15 and the defktition of Var r, that the best 
sampling policy for a specifk value of n is to repcat the measurements n/2 times each 
at the lower and the higher fl value instead of spreading them over the intermediate 
range. This assumes there is a constant statistical weight factor over this range. 

Stage 2. It follows directly from eqn. 12 that 

Var Oz 4Varu 4varu, var 0; 
d 

=-- 
U2 -I- u; f 

6*, 

so that the coordinate transformation gives a contribution 

(17) 

4varu L 4VarU, 
& ’ z$ 081 
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Fig. 2. Illustration of depe@ence of Var b on the numbs of measurements, n (eqn. 1.5). 

In modem equipment, the second term should be negligible so that the concern is 
actually to minimize the first. This will depend on the functional dependence of Var u 
on U, which in turn will depend on the method used in measuring U. An increase in u 
will also have to be considered in conjunction with its effect on (i) the finite transit 
time effect at the outiet, (ii) the dependence of the arrest characteristics on u and 
(iii) the dependence of var d on U, as one requires d to be a constant for all measure- 
ments. 

These questions can be more conveniently answered experimentally and a 
theoretical analysis will not be attempted here. 



Srage 3.-E r = y/h is the fractional height at which the peak width, w,, is 
measured, the variance 0: is related to W, by eon. f 1, i.e. 

-0; = g/s In h/y (19) 

if a g&&m peak form is assumed. Cakxlation of a: requires four independent mea- 
surements : (i) placement .of the baseline, B, and measurement of (ii) peak height h, 
(iii) fractional height y and (iv) width I+ Errors in each of these factors wilf give rise 
to an additive variance contribution in dP_ The general equation relating errors in 
4 to errors fn the measured quantities follows from eqn. 19 as 

jd_ 2 dw, dy SC 
a2 

=-f- (29) 
P 1% y In h/y - /r In jr/y 

This equation will be applied to the evaluation of the contributions due to B, It, y 
and w,. The analysis will follow closely that of Ball er aA9 for an analogous invcsti- 
gation. 

(f) Baseline. Let the true baseline define the line of reference. If B is too low, 
AB will be negative: if B is too high. AB > 0 and h will then be measured incorrectly 
as h - AB_ The placing of the y line relative to the incorrect baseline wih then involve 
an additional error of + AB so that 

y=r(h-AB)+AB 
= r/‘z+AB(l -r) 

and 

dy=y- rh (- true y) 
=AB(l -r) 

This error in y also introduces an error in Ityrr:: 

(21) 

(23 

dw, = ($) dv = - p oP / [ y (in h/y)*]} dy 

so that from eons. 22 and 20, with 

d& = - 2to,(l - r) AB&(ln h/y)+] 
dy =(1--r).& - 

and 

_dh=-AB 

it follows that 

(23) 

--(l - rjAB .- y In h/y i 
(’ - rjoB 

5B Y h WY + h In h/y 
AB = J@(h in /rjy) (24) , 



I; is interesting to note that the errors in w, and y cancel each other. This will 60 be 
seen td apply in (ii) and (iii) below. 

(ii) Height, h. An error, h, in the height will affect they vaiue even if the base: 
E&S is correct: 

y1 *cornx, = m + m 
dy = rd/r (25) 

Also, from eqn. 23, 

dy = rdh 
dh=Ah 

so that 

dc& 
- = -Ah/(h In h/y) 

a2, 

(iii) Intermediate height, y. Here 

dh=o 
dy=dy 

and 

dw, = - 
2* CT, Ay 

Y On h/y)* 

so that 

da2, _ 0 -- 

6 

(iv) W&.&h. Here 

dh =0 
dy =0 
dw, = Awr 

Tberefore 

(26) 



B_muse the measurements are statistically independent, the total variance is the sum 
of the individual variances: 

According to Bali er a!.“, Bw, can be formulated semi-empirically by 

substitution of which into eqn. 30 gives 

Var a: = (AB)* i- (Ah)’ I 4 (Am)’ (1 i- 4 r ;‘;‘, k,Y) 

5 kZ (In k/y)’ ’ 1%: 

(31) 

; 

(32) 

In Fig. 4$ the relative variance in d’, is plotted as a function of the peak shape factor 
k/wo.s for different r = y//z. Typic& values of A& Ah and Am were taken to be 0.010, 
0.012 and 0.008 cm, respectivelylo, and k was taken to be 20 cm (the typical width of 
a recorder paper). Fig. 5 is a similar plot of Var o~/G: as a function of r for various 
shape factors- Peaks can be regarded as normal for a shape factor s = k/wo.s = 1. 
Values of s greater than unity represent sharper peaks, while broad peaks are charac- 
terized by s values smaller than unity. A number of general observations follow from 
an inspection of the figures: (i) sharp peaks give rise to excessive variances in the 
width measurement and should be avoided; (ii) little is gamed by decreasing s below 
1; and (iii) for s = 1, the optimum r is about 0.2. 
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Fig. 5. Dependence of (Var cp3/ap4 on fractional height, r, at which t&2 width is measured. 

These results should not he taken too literally, as they are based on a numerical 
model that may not be generally valid. They also rest on-the assumption of gaussian 
peak shape. What they do indicate, however, is that the choice of peak shape and 
fractionai height is not trivial, and that an effort should be made to optimize the mea- 
surements with respect to them. 

Sysfemuic errors. The systematic errors that arise from instrumentation can 
be simpIy systematized by listing all of the measuring instruments employed. Their 
relative contributions are assessed in terms of the general expression relating D via 
b and the coordinate transformation to 10,. The time axis can be distorted owing to 
inaccurate time measurement, which can be attributed to either the device used, the 
operator or both. Serious errors can he introduced if the absolute ~mtiurements of 
u and z+, are in error. This is quantified by writing eqn. 12 in dXerential form: 

(33) 

Other major potential sources of error are as foUows. 
(i) The detector response, which has already heen discussed. 
(ii) Absolute e%rOrs in recorder response. 
(iii) Absolute errors in the measurements of distzmqes on the recording paper. 

In most instances, e.g.,-with a luler, these errors are due to both the instrument and 
opetitor. 

(iv) pe conditions for which D are reported may be inaccurate. These include 
tem_&raFdre, pressure, purity of the gases tised and the validity of the assumption of 
tracz conditions for the sample (concentration de_aendence of D)_ 

DISCUS=!SION 

It is evident that compliance with an exten&ve list of conditions&prerequisite 
to tie chromatographic peak arrest method for~zhe determinatidn of diffusion co- 
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efficients. On the other hand, these demands invariabiy involve the refkement of 
relatively simple measurements and s@udard precautionary measures, so that there 
appears to be no inherent Jimitation to the development of the method to the level 
of the best existiug techniques_ 

It has been pointed out that many of the crucial issues can be decided only by 
actual experiments so that quantitative predictions are premature at this stage. An 
indication of the demands made on the measurements, however, can be given in terms 
of the preceding analysis. Two specifkations in D will be considered, viz., 1 and 0.1%. 
These approximately represent the state of art and an order of magnitude improve- 
ment, respectively. 

-Typically, values of D range from 0.1.to I.0 cmkc-I. Consider the case when 
D = 0.1 cm2sec-L and Var D/P = 10-j (i.e., the relative standard deviation of D is 
1%). From 

it follows that 

Varb, _ Varb -4 Varu 

% 
-? b- T-- 

4 Var% 

5 
(35) 

If the reasonable assumption is made that the last term is negligible, it follows with 
the use of eqns. 13 and 34 that 

VarbP=4(%)iP( vz2” -4%) 

Remembering that D is not a variable but dependent on the physical system, Var bp is 
seen to exhibit au optimum with respect to u if Var II is assumed to be constant. By 
differentiating eqn. 36 and equating the result to zero, uopf is obtained as 

&p; = [b Var u/(Var DjP))lI (37) 

Some numerical resuits are summarized in Table I (the velocities are in cm/set). 
From eqn. 37 in eqn. 36: 

(38) 

TABLE 1 

VAJ.XJES OF u,,, (EQN. 37) FOR VARIO’JS CCMBINATIONS OF (Var 0)/B AND Vu N. 



14 :- .-. :- .;_- __ .- C’E. .aOETE, ~-~~_.(~!&%UTS;:~_~~EC~ 
. . : :.: ‘, -.. 

;- 

&i b?der of magnifrude &lcul&io&.of.of, c& nbwXb&.bas&&eqn;: &I& ti k-8,. 
V& & -= l@ (correspotiding to t e -600 see). b 4 .‘$5 &n?+%~~_ .Var U:Ll-lO:? c&9 
set -2 and U* = 0.5 &rnsG-I. For-a 1 o? pre@on.?n or thti~Or&p&d&ig V& 1T’p + 0.3 
cd while for O.l’% Var.oi M 0.3. 10z6 cm4.-A rcprese&&e valti&.for 0; is cz. -5 cm. 
As.- 

: 

vara; =4 bra, 
: .- 

“,_- 
tip _. .- i3?)r 

the standard deviations in o, tire obtained a&~!& -W 5 - 1W2 cm arid do P -L S-IO-5 cm 
for 1% and 0.1% precision, respectively_ These are the upper limits as the errors, 
regarded as additive; may cancel each other td a cc-extent in ptititice. Nevertheless, 
it can be seen that.it would hardly be possible to surpass a precisi+ of 0.5 % if con- 
ventional peak measurement techniques are employ*. .Xf a precis@n of 0.1 o? is r& 
quired, the use of electronic data processing equipment appears to become imper- 
ative: 
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LIST OF SYMBOTLS 

5 inner column radius; 
2 = JZ d; 
b =. slope of straight line: d YS. t2; 

bP = slope of straight line: 0: YS. t2; 
B = baseline; 
c = solute concentration ; 
d> = residual ofjth measurement, 

defined as d, = Gf (obs.) - 4 (talc.); 
0, = effective molecular diffusion coeiiicient; 
D, := dimensionl$ss parameter, defined as De = D,,/fu; 
D = binary molecular diffusion Caefficient ; 
G = parameter defined in eqn. 14;. 
d = standard deviation; 
h = peak height; 
k = mass distribution coeEicient ; 

= coIumn length; 
: = dimensionless pa&meter, defined as Z = I/o=; 
Am = paraineter in eqn. 31; : 

m. = total sample mass; 
n .= number of measurements; 
r = fractional height, y/h; -. ., 1. .-. 
r ’ = radial coordinate;. .~ 



re = param&er defined as [Zdi/(?z--2)~; 
>s- = peak &age factor, dewed as s = /z/Iv~_~; 

as = total peak variance iqcofumn coordinates; _ 
Gc = va.riance produced duting time of flow through cohunn; 
t$, = variance prtiduced t)y diffusion &one, Le., during tz; 
4 = variance at c&unn inlet; 
Oz = variance produced by extra-column effects at outlet, including de- 

tector; 
4 = total peak variance on recorder paper;. 
t = time; 
& = time from moment peak enters column to arrest; 
G = arrest time (time of spreading); 

= time from after arrest to column outlet; 
$3 = linear carrier gas veIocity at r’ ; 
U = linear carrier gas velocity averaged over cross-section; 
UP = linear chart paper speed; 
P = volume rate of flow; 
V,,, = effective detector volume; 
W = peak width; 
% = peak width at fractional height r; 
Y = intermediate height at which peak width is measured: 
2 = axial coordinate. 
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